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Abstract Some of the best-known results in mechanism design depend critically
on Myerson’s (Math Oper Res 6:58-73, 1981) regularity condition. For example,
the second-price auction with reserve price is revenue maximizing only if the type
distribution is regular. This paper offers two main findings. First, a new interpretation
of regularity is developed—similar to that of a monotone hazard rate—in terms of
being the next to fail. Second, using expanded concepts of concavity, a tight sufficient
condition is obtained for a density to define a regular distribution. New examples of
regular distributions are identified. Applications are discussed.
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1 Introduction

Some of the most celebrated results in the theory of mechanism design require the
underlying type distribution to be regular. For example, the second-price auction with
reserve price is revenue maximizing only under the condition of regularity (Myerson
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592 C. Ewerhart

1981). When the type distribution is not regular, the optimal mechanism will typi-
cally entail conditional minimum bids (Maskin and Riley 1989). In general, irregular
type distributions necessitate the characterization of optimal bunches (N6ldeke and
Samuelson 2007). Formally, regularity says that the virtual valuation,

1— F(x)
fx) 7

is strictly increasing in the type x, where f and F, respectively, denote the density
and distribution function of the type distribution.’

A common way to ensure regularity is to impose that the reciprocal of the second
term in (1), i.e., the hazard rate of the type distribution,

&)
hpx) = lf—;f(x)

Jr(x) =x— @))

2

is monotone increasing.? This approach has been found useful mainly for two reasons.
First, the hazard rate allows an immediate interpretation as a conditional likelihood of
failure. Indeed, if F'(x) is the probability that a machine will fail before time x, then
the hazard rate is the instantaneous probability of failure, given that the machine has
not failed before time x (Barlow and Proschan 1975). Second, distributions with log-
concave densities are known to possess a monotone hazard rate (An 1998). This result
can be used to identify many parameterized examples of regular type distributions.
Specifically, as Bagnoli and Bergstrom (2005) show, regularity holds for the uniform,
normal, exponential, logistic, extreme-value, Laplace, Maxwell, and Rayleigh distri-
butions. With restrictions to parameters, this list extends to power, Weibull, Gamma,
Chi-squared, Chi, and beta distributions.

However, the hazard rate condition implies that virtual valuations increase with
slope >1, which is overly restrictive. For example, as illustrated in Fig. 1, the log-
normal distribution does not possess a monotone hazard rate, but will still be regular
unless the density is very flat.> However, specifications with precisely this shape have
been found plausible as an empirical description of bidder valuations (Baldwin et al.
1997; Guerre et al. 2000; Laffont et al. 1995). Thus, imposing the hazard rate condition
or even a log-concave density not only impairs the power of theoretical findings but
also restricts in a substantial way the set of distributional specifications available for
applied work.

This paper offers two main findings. The first is a statistical interpretation of regu-
larity. As in the case of the hazard rate, the density function measures the instantaneous
unconditional rate of failure. Regularity can then be captured in terms of the proba-
bility that a given machine will be the next to fail. This yields some intuition, e.g.,

1 Equivalently, the marginal revenue of a monopolist facing inverse demand p = Fl( —q)is strictly
declining in output (Bulow and Roberts 1989).

2 Fora helpful discussion of the respective classes of distributions with increasing and decreasing hazard
rate, see Hoppe et al. (2011).

3 Indeed, the log-normal distribution is regular provided its skewness is smaller than (€ +2)v/e2 -1~
23.73 (see Table 1 and the Appendix).
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Fig.1 Regularity of the log-normal distribution; the figure shows density, hazard rate, and virtual valuation
of a random variable whose logarithm follows a standard normal distribution

regarding truncations of regular distributions. The second main result, which is the
central point of the paper, is a sufficient condition for a density to define a regular
distribution. The condition, referred to as strong (— %)—concavity, is much tighter than
log-concavity. Numerous new examples of distributions can be shown to be regular. In
particular, we establish the regularity of distributions of log-normal shape, for which
existing criteria have no bite.

The rest of the paper is organized as follows. Section 2 reviews mathematical
prerequisites. An interpretation of regularity is developed in Sect. 3. In Sect. 4, we
prove a general characterization of distributions that possess weakly increasing virtual
valuations. Section 5 contains the key result of the paper, viz. that a strongly (—%)-
concave density defines a regular distribution. Applications are outlined in Sect. 6.
Sect. 7 concludes. An Appendix provides background information on Tables 1 and 2.

2 Mathematical tools

This section reviews some mathematical concepts and results that will be used in the
analysis.

2.1 Generalized concavity

A function ¢ > 0 on RV is called p-concave, for p # 0, if the set X, =
{((x1,...,xy) € RN @ g(x1,...,x,) > 0} is convex, and (g(x1,...,xn))"/p is
concave on X,. For p = 0, the definition is extended by the requirement that g must
be log-concave on X,.*

4 Complemented by the two limit cases p = oo (which are not needed here), this is the definition used
in the economics literature since Caplin and Nalebuff (1991a,b). Dierker (1991) is an early application of
generalized concavity in the economics literature.
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594 C. Ewerhart

Higher values of p correspond to more stringent variants of concavity. For example,
log-concavity is more stringent than p-concavity for any p < 0. We call a function
g strongly p-concave if g is p’-concave for some p’ > p. For a twice differentiable
function g : R — R, inasingle variable x, the condition of p-concavity is equivalent
0 g(x)g"(x) — (1 = p)g'(x)* < 0.

Among alternative notions of concavity, the definition above is highlighted by
the fact that concavity properties are passed on from a density to the corresponding
distribution.

Theorem 2.1 (Prékopa—Borell) Let g = g(x1, ..., xn) > 0 be a density on RN, Ifg
is p-concave for some p > —%, then

G(z) = / g(x1, ..., xy)dxy...dxy 3)
{xeRN:xy <z}
is p-concave with p = ﬁ.
For a helpful discussion of this result, see Caplin and Nalebuff (1991a). In the
simplest case (N = 1), the Prékopa—Borell theorem says that if a density g > 0

on R is p-concave for some p > —1, then G(z) = ffoo g(x) dx is p-concave with
p=1t

Theorem 2.1 is best known in the special case where p = 0 (Prékopa 1973). For
example, if g is a log-concave density, then both G and 1 — G are log-concave, and
hence, % is monotone decreasing, and % monotone increasing (An 1998; Bagnoli

and Bergstrom 2005). Similarly, if g(x) is (strictly) log-concave in log x, then 1= gga)

is (strictly) increasing in x (van den Berg 2007; Zeng 2011). A multidimensional
variant of Prékopa’s theorem has been used, e.g., by Ivanov (2011).

2.2 Minimal conditions for monotonicity

A smooth function is monotone increasing provided that its first derivative is never
negative. Here is a generalization to the non-differentiable case. For a given function
g, denote by gt (x) = lim Sup, o4 %(g(x + &) — g(x)) the right-hand upper Dini
derivative at x.

Theorem 2.2 Assume that

limsupg(x —¢) < g(x) < limsup g(x + ¢) (@)
e—>0+ e—>0+

at any x, that g (x) > 0 a.e., and that g (x) > —o0 except possibly at a countable
set. Then g is monotone increasing.

This result follows from Theorem 7.3 in Saks (1937).% Note that (4) holds if g is
right-continuous and upper semi-continuous.

5 See also the discussion following the theorem.
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Regular type distributions in mechanism design 595

3 An interpretation of regularity

McAfee and McMillan (1987) observed that in the smooth case, regularity is equivalent
to the strict convexity of 1/(1 — F(x)). For a direct proof of this fact, assume that F
is twice differentiable. Then

_ 2 o /
3J ¢ (x) :i(x_l F(x)) s )2+ (1 F(x))f(x). N
ax ax £ (x) f(x)?
On the other hand,
9 1 8 f (0 =F@)f@+2f)? ©
9x21—F(x) oax(1—Fx)? (1= F(x))3 ’

i.e., the respective signs of .l]’c (x) and (1/(1 — F(x)))” coincide.

It apparently went unnoticed that the above characterization implies the following
statistical interpretation of regularity. Imagine a large number M of machines which
fail one after another at rate f(x). Pick one machine from the population, and assume
it has been functional up to time x. By the law of large numbers, there are about
M (1 — F(x)) machines left. But all machines are ex-ante identical, so the uniform
likelihood for the chosen machine to be the next to fail is [(x) =~ 1/M(1 — F(x)).
By the zoom rate, we mean the rate at which this likelihood grows over time (as a
consequence of other machines failing). Regularity then requires the zoom rate to be
increasing over time.®

To see the interpretation at work, recall that any regular type distribution remains
regular after arbitrary truncations.’” This is quite obvious for truncations from below
because dropping a subpopulation consisting of all machines that stop working before
some specified time xy obviously does not affect the later development of the zoom rate.
For truncations from above, the intuition is as follows. Since the zoom rate is increas-
ing, the population must shrink sufficiently fast to compensate for any slow-down in
the development of failures. In this situation, dropping a subpopulation consisting of

6 More formally, let m > 1 denote the exact number of machines that are still working at time x. Then, the
likelihood for a given machine to be the next to fail is

I(x)

M
1 (M —1
> Z(m B 1)(1 — Fe)" @M

m=1
M

_ 1 M _ m M—m
= WA= Fo) mZ::l (m)u F(x))" F(x)
1= Fx)M

T M0 —-F®x)’

Therefore, for x kept fixed, [(x) is indeed asymptotically equivalentto 1 /M (1 — F (x)) as M — oo. Further,
one can check that 9//dx ~ f(x)/M(1 — F (x))2. This follows from differentiating the precise expression
for /(x) derived above.

7 Cf. Hafalir and Krishna (2008), or Virag (2011).
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596 C. Ewerhart

all machines that survive beyond some time x| accelerates the population effect, while
there is no impact on the failures occurring before time x;. Thus, the zoom rate will
be increasing also in the truncated distribution.®

4 A generalization

So far, we assumed that the density function is differentiable. However, this may be
restrictive, e.g., when the distribution is a mixture or the result of endogenous decisions.
To incorporate such possibilities, smoothness will be replaced by a somewhat weaker
assumption.

Consider a density f > 0 on some interval X € R. Without loss of generality, we
assume that f is strictly positive in the interior of X. Indeed, if f(x) = 0 at some
interior point x, then J¢(x) = —o0, and J; cannot be increasing. We will say that f
satisfies the Cantor-Lebesgue condition (CL) if f is right-continuous in the interior
of X, upper semi-continuous, and satisfies 7+ > —o0 except possibly at a countable
set. This condition is quite weak. For example, it is satisfied for right-continuous,
piecewise differentiable densities that do not possess downward jumps.’

The following auxiliary result can be seen as a generalization of the smooth char-
acterization of regularity. Note, however, that it concerns weakly increasing virtual
valuations.

Lemmad.1 Let f > 0 be a density on some interval X C R, and assume that
condition (CL) holds. Then, Jy(x) is nondecreasing if and only if 1/(1 — F(x)) is
convex.

Proof The right-hand upper Dini derivative of J;(x) = x — (1 — F(x))/f (x) is given
by

— o 1 l—F(x—i-a)_l—F(x)
Ty =1 lifif)‘ips[ Fa+e) F@) ] @
o F(x+e) — F(x)
= s e [ :
1—Fkx) f(x+¢)— f(x)
fx) & ] ®

Clearly, the derivative of F is a.e. well-defined with F” = f. Hence, noting that f is
right-continuous,

(1= F)f ()
f(x)?

Trm =2+ )

8 The zoom rate formulation of increasing virtual valuations has been taken up already by Szech (2011) to
predict over- and underinvestment in attracting bidders to an auction.

9 Monteiro and Svaiter (2010) study optimal design for arbitrary distributions. For example, the support
of the distribution may have gaps, and there may be mass points. Obviously, there is no role for regularity
under such general conditions.
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Regular type distributions in mechanism design 597

ae.inX.Letdr(x) = f(x)/(1— F(x))2. Since F is continuous, the right-hand upper
Dini derivative of ¥ ¢ (x) is given by

1 fx+e) fx)
Ty =limaup [ I—Fa+en? (- F(x»z] 1o
_ L msup [ fr+8) = fx)
1 - F(x))z e—0+ &
_ fw d —F<x+e>)2—<1—F(x)>2] an
(1 — F(x))? £ '
Hence,
- T @ = F) +2f(x)?
I = (12)

(1= F(x))?

a.e. in X. Comparing (9) and (12) shows that 7;5 (x) and 5; (x) share the same sign
a.e.in X.

“Only if.” Assume that J y is monotone. Then J > Oon X, and therefore, B f (x) >
0 a.e. in X. An inspection of (11) shows that @ ¢ satlsﬁes condition (CL). Hence, by
Theorem 2.2, ¥ is nondecreasing. Thus, any integral of ¢ is convex, in particular
1/(1 = F(x).

“If.” Conversely, assume that 1/(1 — F(x)) is convex. Then the left derivative of
1/(1 — F(x)) is well-defined in the interior of X and monotone. But a.e. in X, the
left derivative of 1/(1 — F(x)) is given by © ;. Thus, 5; (x) > 0Oa.e.in X. As shown

above, this implies 7;(x) > 0 a.e. in X. One can check using (8) that J satisfies
condition (CL). Therefore, by another application of Theorem 2.2, J; is monotone
increasing. O

5 A condition on the density

This section contains the key result of the paper. The Prékopa—Borell theorem is used
to derive a tight criterion for regularity on the underlying density function. To deal
with strict monotonicity, and to allow for modifications of the regularity assumption,
we will write

b— F(x)

Jr(x,a,b) =ax — 70

, (13)

where a, b € R. Note that J¢(x, 1,1) = J¢(x).

Theorem 5.1 Let f > 0 be a density on some interval X C R, and a > —1. Then
Jr(x,a, b) is weakly increasing in x [strictly increasing in x| for any b € [0, 1] if

f is p-concave [strongly p-concave] for p = 1+a In particular, Jy(x) is strictly

increasing if f is strongly —%) -concave.
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598 C. Ewerhart

Table 1 Distributions with strongly (— %)—concave density function

Name of distribution Interval X Pd.f. f(x) C.d.f. F(x) Concavity p
Any with log-concave density See Bagnoli and Bergstrom (2005, Table 1) >0
. —p—1 - 1
Pareto (8 > 1) [1; 00) Bx—P 1—xh -z
a2 . 1 (ln)cfuL)2 GI%
Log-normal® (o] < 2,1 € R) [0; 00) o pexp | ———5L=) = —+
ZUL
Student® (n > 1 R 14 x2/m) _1
udent® (n > 1) o« (1 +x%/n * T
b . 1, arctanx _1
Cauchy R v 5+ 5 7
"l] 1
F distribution® (m| > 2, my > 2) [0; 00) o xZ R * '712%
(myx+my) 2
Mirror-image of Pareto (8 > 1)  (—o0; —1] B(—x)P-1 (—x)~P _ﬁ
e . pxP~1 Pl _ 1
Log-logistic (8 > 1) [0; o0) (P2 TirP eS|
Inverse gamma (o > 1) [0; 00) % * 70#1
Inverse Chi-squared (v > 2 0; a2 ] ! 2
nverse Chi-squared (v > 2) [0; oc0) mexp (7§) * )
Beta prime? (o« > 1,8 > 1) [0; c0) o x4 x)~=B * _ﬁ
Pearson (by > —%) See the Appendix by

4 The symbol o indicates that the density function, for fixed parameters, is proportional to the term given
in the table; for cumulative distribution functions marked with =, there is no closed-form representation
b The density function of the Cauchy distribution is strongly (— %)-concave on any compact interval

Proof Assume that f is (—I“W)-concave for some a > —1. Consider the mirror
image density g(y) = f(—y). Obviously, also g is (— 1i—u)-concave. By Theorem 2.1,
the integral G(y) = 1 — F(—y) is (—a)-concave, and so is 1 — F(x). Since f is
continuous on X with finite right derivative in the interior, condition (CL) holds.
Therefore, in straightforward extension of Lemma 4.1, J¢(x, a, 1) is nondecreasing.
Similarly, J#(x, a, 0) is nondecreasing since F (x) is (—a)-concave. The unbracketed
part of the theorem follows now from noting that J¢(x, a, b) is linear in b. If f is
even strongly (—laq)-concave for some a > —1 then, by the first part of the proof,
Jr(x,d', b) is weakly increasing in x for some a’ € (—1, a). Hence, J7(x,a,b) =

Jr(x,a',b) + (a — a’)x is strictly increasing in x. O

Thus, strong (—%)-concavity of the density is sufficient for regularity. Since any
log-concave function is strongly (— %)-concave, Theorem 5.1 clearly implies the con-
ventional log-concavity criterion. '

On the other hand, density functions certainly may be strongly (— %)—concave with-
out being log-concave. For example, as Table 1 shows, this is the case for the log-
normal, Pareto, log-logistic, Student, Cauchy, F, beta prime, mirror-image Pareto,

10 Theorem 5.1 can be applied also if the density function has finitely many convex kinks and jump
discontinuities. In such cases, one requires strong —%)—concavity of f in each smooth segment, and

strong (—1)-concavity of F just left of critical points. For a proof, one constructs a strongly ( —%)—concave
extension of the density right of the critical point. The details are omitted.
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Regular type distributions in mechanism design 599
Table 2 Distributions without strongly (— %)—concave density function
Name of distribution Interval X P.d.f. f(x) C.d.f F(x)  Values J ; Costs K }
Power (¢ < 1) [0:1] exc! x€ 20 >0
Weibull (¢ < 1) [0; 00) ch*]exp(—xC) 1 —exp(—x©) }f 0 >0
—1 _
Gamma (c < 1) [0; o0) % * }f 0 >0
Chi-squared (¢ < 2 0; x D exp(—x/2) 0 0
i-squared (¢ < 2) [0; o0) T e * z >
. . x~lexp(—x2/2)
Chi(c < 1) [0; 00) e * 20 >0
Beta® (v < lorw < 1) [0;1] o xV (1 = xye-] * Mixed Mixed
Arc-sine [0;1] n\/ﬁ %arcsin(x) }f 0 Z 0
Pareto (8 < 1) [1;00)  BxB-1 1—xF #0 >0
2
Log-normal® (UI% >2) [0; 00) 4 %exp _(In 12_’2“) * Mixed >0
o
L
_ntl
Student® (n < 1) R o (1 + ’51—2) 2 * /)f 0 }f 0
LS

F distribution® [0:00) o —E 2 * Mixed >0

(mp <2ormp <2) (myx+mp) 2
Mirror-image of Pareto (—o0; —1] ,B(—x)*ﬁ*1 (—x)*/3 >0 ;7_4 0

B<D
Log-logistic (8 < 1) 0:00) B b #0 =0

g-log ’ (14+xP)2 14-xP
Inverse gamma (o < 1) [0; 00) % * z 0 >0

Chi d@w<2) [0; S ! 0 0

Inverse Chi-squared (v < 2) [0; 00) Waxp (73) * 2 >
Beta prime? (o, 8 < 1) [0; 00) o x? (1 4 x)—*=B * Mixed >0
Pearson (by < —%) See the Appendix Mixed Mixed

4 The symbol o indicates that the density function, for fixed parameters, is proportional to the term given
in the table; for cumulative distribution functions marked with =, there is no closed-form representation

inverse gamma, inverse Chi-squared, and Pearson distributions.!! Thus, Theorem 5.1
finds new regular distributions and settles, in particular, the case of distributions with
log-normal shape. Conversely, Table 2 lists various distributions that lack a strongly

—%)—concave density function. We write J } > 0if J } (x) > Oholds forall x € X and
for all strictly positive parameter values in the range indicated in the leftmost column.
Similarly, we write J } 2 0 if for all such parameter values, there is some x € X such
that J } (x) < 0. The entry “Mixed” is used when neither J} > O nor J } ;_4 0 holds. It
can be seen that most examples in Table 2 are never regular, regardless of parameter
values. Overall, this clearly illustrates the tightness of Theorem 5.1.

1 Further details regarding Tables 1 and 2 can be found in the Appendix.
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600 C. Ewerhart

In fact, strong (—%)—concavity is the tightest condition possible in terms of gen-
eralized concavity. For instance, the density function f(x) = (1 + x)~2 on Ry is
—%)-concave, but not strictly so, and the corresponding distribution is irregular.

6 Applications

This section illustrates the use of Theorem 5.1 in specific settings. In all cases con-
sidered, the criterion reduces the regularity condition to a condition on the density
function alone, and thereby adds clarity to the scope of the findings.

6.1 Standard design problems

The revenue-maximizing mechanism in Myerson (1981) is a second-price auction
with reserve price provided the underlying type distribution is regular. While previous
conditions on the density function required log-concavity, the conclusion continues to
hold if the density is strongly (—%)-concave. Relatedly, Riley and Samuelson (1981)
show that the optimal reserve price in a broad class of auctions can be found by setting
the virtual valuation equal to the seller’s reservation value. The resulting equation has
a unique solution provided the distribution of types is regular. The range of densities
can be widened as before. For a somewhat richer example, recall that in Baron and
Myerson (1982), optimal regulation of a monopoly discriminates between cost types
provided that 0 + (1 — a)% is increasing in 8, where o € [0, 1] is the policy weight

of monopoly. Here, it suffices to assume that f is p-concave for p > — 51—, which is

2—a’
less restrictive than log-concavity.

6.2 Two-sided markets and auctions with resale

An optimal trading mechanism exists in Myerson and Satterthwaite (1983) if the
buyer’s virtual valuation J¢(x) and the seller’s virtual cost K y(x) = J¢(x,1,0) =
x + Fg; are both increasing in x. The function Ky is increasing provided condition
(CL) holds and F is strongly (—1)-concave. The commonly made condition on the
density is log-concavity, but strong (— %)-concavity is sufficient.!? Similar conclusions
can be drawn for auctions with resale where regularity conditions ensure that monopoly

and monopsony prices are unique (Cheng and Tan 2010).

6.3 Distribution of bids

Guerre et al. (2000) show that bids in a first-price auction can be rationalized as
a Bayesian equilibrium under the independent private value paradigm whenever x +
% (g;((;‘)) = M increases in x, where [ is the number of bidders, G is the distribution

of bids, and g is the corresponding density function. While the common condition on

12 1n fact, for unimodal densities, strong (—%)—concavity is required only on the increasing tail of the
density, which also explains the many positive findings in the rightmost column of Table 2.
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Regular type distributions in mechanism design 601

the density would be log-concavity, any strongly p-concave density with p = _1+L1
can be rationalized.
6.4 Affiliated types
Chung and Ely (2007) consider affiliated valuations xp, . . ., xn, and show that a gener-

alized hazard rate condition implies a single-crossing condition for virtual valuations.
This allows them to provide a foundation for dominant-strategy mechanisms. We note
that with continuous affiliated types, assuming that f(xy, ..., xy) is strongly (—%)-
concave would be much less restrictive than the generalized hazard rate condition, but
still ensure the single-crossing condition for virtual valuations.!

6.5 Multidimensional types with externalities

An object is sold to one of N buyers. With externalities, buyer i’s type is a vector
(sl.i, sii) whose entries specify the respective payoff to i in case some buyer j, not
necessarily different from i, obtains the good. The distribution of buyer i’s type fol-
lows some density f; (sf, st ;). Jehiel et al. (1999) show that the revenue-maximizing
standard anonymous mechanism that always transfers the object is a second-price
auction with entry fee if a modified regularity condition holds. Specifically, for

g2 = / ﬁ(z+ﬁ§s3,si»dsii, (14)

RN-1

the virtual valuation J, needs to be increasing. By Theorem 5.1, it suffices that g is
strongly (—%)-concave. But from (14), the change of variables in the argument of
fi is an affine transformation of RY, which leaves generalized concavity unaffected.
Therefore, the second-price auction with entry fee is optimal if all f; are strongly
(—ﬁ)-concave.

7 Conclusion

A formal re-examination of Myerson (1981) regularity assumption has led to the results
in two dimensions. First, a new statistical interpretation of regularity has been pro-
posed, which is both simple and similar to the one that is known for the hazard rate. Sec-
ond, existing criteria for regularity due to Bagnoli and Bergstrom (2005) and An (1998)
have been refined, using expanded concepts of concavity as well as minimal conditions
for monotonicity. In sum, these results illuminate the scope of the regularity assump-
tion, and substantially widen the range of specifications available for applied work.

13 Chung and Ely (2007) assume discrete type distributions, but their results could probably be extended
to continuous distributions.
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Appendix: Parameterized distributions

This Appendix outlines the derivations underlying Tables 1 and 2. The main tool is
the following smooth criterion for p-concavity.

Lemma A.1 Let f > 0 be twice continuously differentiable on some interval X C R,
with a discrete set X| over which f'(x) = 0. Then, for finite p, the function f is
p-concave if and only if ry(x) = —(In f(x))"/(In FO)? > pforallx € X\ X1.

Proof A straightforward calculation shows that rp(x) = 1 — f(x)f"(x)/f’ (x)2.
Hence, r¢(x) > p if and only if f(x)f"(x) < (1 — p) f'(x)?, provided f'(x) # 0.
By continuity, this proves the assertion. O

Lemma A.l reduces the determination of the global concavity parameter to a
straightforward minimization problem. More specifically, to find the tightest para-
meter p for which a given f is p-concave, one calculates the minimum (or infimum)
of ry(x) on X. Table 1 shows the results for selected examples. A particular case is
the Pearson distribution. Its density function solves the differential equation f/(x) =
f)(x —xM)/X(x) forx™ € Rand x(x) = by + by x + byx2, where by, by, by € R.
We focus on distributions with unbounded support and such that x (x*) < 0. Then,
[ is by-concave. Thus, both J¢ and K ; are increasing provided that b, > —%.

Table 2 shows examples of distributions that do not allow a strongly (— %)—concave
density function. Unless noted otherwise, all parameter values are strictly positive.
The only regular example is the mirror-image Pareto distribution. The entries of the
form J } z 0, K } ;‘é 0, or “mixed” have been established by direct calculation at
boundary values. In some cases, numerical calculations have been used. The entries
with K ’f > 0 are typically straightforward, e.g., when the density function is every-
where declining. Some cases, however, need additional arguments. For example, both
the log-normal distribution and the F distribution (Finner and Roters 1997) possess a
log-normal distribution function, even though the corresponding density functions are
not log-normal. In other cases (inverse gamma distribution and inverse Chi-squared),
the density function is log-concave for low values and decreasing for high values,
which again is sufficient for K ’f > 0.
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